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Abstract: The goal of an exam in cognitive diagnostic assessment is to uncover whether an examinee
has mastered certain attributes. Different cognitive diagnosis models (CDMs) have been developed
for this purpose. The core of these CDMs is the Q-matrix, which is an item-to-attribute mapping,
traditionally designed by domain experts. An expert designed Q-matrix is not without issues. For
example, domain experts might neglect some attributes or have different opinions about the inclusion
of some entries in the Q-matrix. It is therefore of practical importance to develop an automated
method to estimate the Q-matrix. This research proposes a deterministic learning algorithm for
estimating the Q-matrix. To obtain a sensible binary Q-matrix, a dichotomizing method is also
devised. Results from the simulation study shows that the proposed method for estimating the
Q-matrix is useful. The empirical study analyzes the ECPE data. The estimated Q-matrix is compared
with the expert-designed one. All analyses in this research are carried out in R.

Keywords: Q-matrix; DINA; RRUM; CDM

1. Introduction
1.1. Cognitive Diagnosis Models

Cognitive diagnostic assessment (CDA) is a framework that intends to evaluate an
examinee’s mastery of a specific cognitive skill called an attribute [1]. A few cognitive
diagnosis models (CDMs) have been developed, such as the deterministic input, noisy “and”
gate (DINA) model [2], and the reduced reparameterized unified model (RRUM) [3,4].

The core of different CDMs is the Q-matrix [5]. Table 1 shows a simple example of
the Q-matrix, which assesses whether an examinee has acquired addition and subtraction
attributes. An examinee must possess an addition attribute in order to correctly answer the
first item. Suppose that the attribute status of the examinee is (1, 0). Without possessing
the subtraction attribute, the examinee is expected to only answer item 1 correctly since
items 2 and 3 require a subtraction attribute.

Table 1. A Q-matrix example.

Item
Attribute

Addition Subtraction

(1). 4 + 5 1 0
(2). 7− 2 0 1

(3). 6 + 3− 1 1 1

The DINA model and RRUM are two popular models based on the Q-matrix. The
DINA model and RRUM are non-compensatory, assuming that examinees must have
mastered all the required attributes to correctly answer an item.

Mathematics 2021, 9, 3062. https://doi.org/10.3390/math9233062 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0814-2252
https://orcid.org/0000-0002-0324-8963
https://doi.org/10.3390/math9233062
https://doi.org/10.3390/math9233062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233062
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233062?type=check_update&version=2


Mathematics 2021, 9, 3062 2 of 11

Suppose the data is comprised of item responses from I examinees to J items that
measure K attributes. In the DINA model, ηij indicates whether examinee i (i = 1, · · · , I)
can correctly answer item j (j = 1, · · · , J) ,

ηij =
K

∏
k=1

α
qjk
ik ,

where αik is the mastery of attribute k (k = 1, · · · , K) for examinee i and qjk is the state of
the jth item and kth attribute in the Q-matrix. The item response function (IRF) for the
DINA model is:

P(Xij = 1|αi) = (1− sj)
ηij g

1−ηij
j ,

where gj and sj are guess and slip parameters for item j, αi is the attribute status of examinee
i. The guess parameter gj represents the probability of Xij = 1 when at least one required
attribute is lacking, and the slip parameter sj denotes the probability of Xij = 0 when all
required attributes are present.

Suppose the guess and slip parameters for item 1 in Table 1 are g1 = s1 = 0.2. If the
attribute status of an examinee i is αi = (1, 0), then ηi1 = 1. Therefore, the examinee’s
probability of correctly answering item 1 is P

(
Xij = 1|αi = (1, 0)

)
= (1− 0.2)10.20 = 0.8.

The RRUM is another popular CDM, especially in language assessment. The IRF of
the RRUM is:

P(Xij = 1|αi) = π∗j

K

∏
k=1

(r∗
(1−αik)

jk )qjk , (1)

where π∗j =
K
∏

k=1
(1− sjk)

qjk and r∗jk = gjk/1− sjk. Note that gjk and sjk are guess and slip

parameters of item j for attribute k. As in the DINA model, αik is the mastery of attribute k
for examinee i and qjk is the state of the jth item and kth attribute in the Q-matrix.

1.2. Model Based Estimation of the Q-Matrix

Most of the Q-matrices are not specified during exam development and are conven-
tionally designed by domain experts after the fact. A more objective means to assign the
Q-matrix is needed because domain experts might neglect some attributes or have different
opinions. For instance, different modifications of the Q-matrix for the fraction subtraction
data [6] have been suggested (e.g., Tatsuoka [6]; de la Torre [7]; de la Torre and Douglas [8];
de la Torre and Douglas [9]; Henson et al. [10]; Tatsuoka [11]) over the past three decades.

It is therefore of practical importance to develop an automated method for searching
the Q-matrix. The purpose of this research is to develop a deterministic learning algorithm
that estimates the Q-matrix for CDMs. It should be noted that this research attempts to
develop a method to estimate the whole Q-matrix rather than to validate an existing one.

Estimating the whole Q-matrix is NP-hard [12]. The sample space of this discrete
optimization can be huge. For example, simulation studies of this research try to recover
a 15 by 4 Q-matrix (see Table 2), which gives 260/4! possible Q-matrices when column
permutation is considered. Since the optimization problem can be simplified using model-
based methods, most of the studies attempting to estimate the Q-matrix are CDM based.

For example, Chen et al. [13], Liu et al. [14], Liu et al. [15], and Xu and Shang [16] use
the DINA model to estimate the Q-matrix. Chung [17] and Chung [18] show that both the
DINA model and RRUM are both feasible models. Treating the Q-matrix as a parameter
to estimate these studies assume that the true model is the DINA model or the RRUM.
Although simulations in these studies suggest promising Q-matrix recovery rates, it is
desirable to find non-model-based methods.
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Table 2. Q-matrices for simulations.

Item
Complete Q-Matrix Incomplete Q-Matrix

Attributes Attributes

1 2 3 4 1 2 3 4

1 1 0 0 0 1 0 0 1
2 0 1 0 0 0 1 1 0
3 0 0 1 0 0 1 1 0
4 0 0 0 1 1 0 0 1
5 1 1 0 0 1 1 0 0
6 1 0 1 0 1 0 1 0
7 1 0 0 1 1 0 0 1
8 0 1 1 0 0 1 1 0
9 0 1 0 1 0 1 0 1

10 0 0 1 1 0 0 1 1
11 1 1 1 0 1 1 1 0
12 1 1 0 1 1 1 0 1
13 1 0 1 1 1 0 1 1
14 0 1 1 1 0 1 1 1
15 1 1 1 1 1 1 1 1

1.3. NMF Estimation of the Q-Matrix

Winters [19] was the first to apply non-negative matrix factorization (NMF) to explore
the structure of the Q-matrix. Desmarais and his colleagues have also published a few stud-
ies (e.g., Desmarais [20]; Desmarais [21]; Desmarais and Naceur [22]; Desmarais et al. [23])
that apply NMF to estimating the Q-matrix. These studies applying NMF are inspiring,
showing that Q-matrix estimation is in essence a matrix factorization.

While their findings are promising, some issues are worth considering. The primary
concern is that the inclusion of an entry (1 or 0) is counted solely on visual inspection
using heatmaps. While using visual inspection is desirable in some conditions, we would
expect a more decisive means to avoid ambiguity. Another issue is that the way the initial
values were retrieved is unclear, especially considering that NMF is very sensitive to initial
values (Cichocki et al. [24]; Gond and Nadi [25]; Zheng et al. [26]). A more recent work
by Casalino et al. [12] has shown that using the constraint alternating least square is a
practical solution to a stable estimation.

Other issues are related to their simulation studies. No information is available for
the different sample sizes and the correlations between attributes. In addition, each item
measures at most two attributes in their Q-matrix for simulations when in reality it is not
uncommon to have an items testing more than two attributes. We are also interested in
whether NMF can recognize items measuring all attributes.

Inspired by Desmarais and his colleagues’ research, this research offers a factorization
algorithm for the Q-matrix, as well as refining simulation designs. Specifically, we use a
maximum likelihood estimation and enforce a dichotomizing scheme in the estimation. We
define a recovery rate to investigate the effect of the method on different sample sizes and
correlations under complete and incomplete Q-matrix designs. In addition to the DINA
model, the RRUM is also adopted in the simulation study.

2. A Deterministic Learning Algorithm for the Q-Matrix
2.1. Maximum Likelihood Estimation

Barnes et al. [27] and Desmarais [20] give the following equation that infers the item
response (X) as the product of the Q-matrix (Q) and the attribute mastery matrix (α):

X = QαT , (2)
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where X, Q, and α are binary with each element either 0 or 1. Estimating the Q-matrix
turns into a factorization problem, which can be simplified if we temporarily treat Q as
continuous.

This research proposes to freely derive Q by maximum likelihood estimation and
then dichotomize the estimate to produce a binary Q-matrix. The advanced procedure is
explained as the following. Suppose that a corresponding continuous version of Q is R.
The problem becomes to find a valid factorization of X that could provide an estimate of R:

X = RαT . (3)

If the transformation in (3) is linear and nonsingular, then αT = R−1X. Using a
Jacobian transformation, we can derive the pdf of X:

pX(X) =
1

|detR| pα

(
αT
)

. (4)

Let M = R−1, and let pi denote the pdf of αi. The pdf of X in (4) becomes:

pX(X) = |detM|pα

(
αT
)
= |detM|∏

i
pi

(
αT

i

)
.

Suppose the Q-matrix measures K attributes. That is, M = (m1, m2, · · · , mK)
T , and there-

fore:

pX(X) = |detM|
K

∏
i=1

pi

(
mT

i X
)

. (5)

Suppose that we have N observations, denoted X1, X2, · · ·XN . From the pdf shown
in (5), the likelihood L(M) is therefore:

L(M) =
N

∏
n=1

K

∏
i=1

pi

(
mT

i Xn

)
|detM|,

and therefore the log-likelihood is:

log L(M) =
N

∑
n=1

K

∑
i=1

log pi

(
mT

i Xn

)
+ N log |detM|. (6)

Dividing the log-likelihood of (6) by N yields:

1
N

log L(M) = E

(
K

∑
i=1

log pi

(
mT

i X
)
+ log |detM|

)
. (7)

It should be noted that the expectation will eventually be replaced by sample averages.
To find the learning algorithm for M, we can maximize (7) by taking partial derivative

with respect to M:

1
N

∂ log L(M)

∂M
=

∂E
(

∑K
i=1 log pi

(
mT

i X
))

∂M
+

∂E(log |detM|)
∂M

.

To simplify notation, we let ui = mT
i X so that

∂E(∑K
i=1 log pi(mT

i X))
∂M =

∂ ∑K
i=1 log pi(ui)

∂M . If

we let p(u) =
n
∏
i=1

pi(ui) and define ϕ(u) = −
∂p(u)

∂u
p(u) where ϕ(·) is the negative score function,

Lee et al. [28] shows that:

∂ ∑K
i=1 log pi(ui)

∂M
= −ϕ(u)XT .



Mathematics 2021, 9, 3062 5 of 11

We now evaluate the other term, ∂ log |detM|
∂M . From Grossman [29], we know that:

1
M

=
1

detM
adj(M),

where adj(M) is the adjoint of M. We can express detM in terms of cofactors,

detM =
n

∑
k=1

bik Mik. (8)

Taking partial derivative of (8) with respect to mij gives ∂detM
∂mij

= mij, which suggests that:

∂detM
∂bij

= adj(M)T .

As adj(M)T = (detM)
(

MT)−1
, we get:

∂|detM|
∂M

=
detM
MT ,

so that:
∂ log |detM|

∂M
=

1
det|M|

∂|detM|
∂M

=
1

MT .

The gradient of the log-likelihood in (7) is therefore:

1
N

∂ log L(M)

∂M
=

∂E
(
∑n

i=1 log pi
(
mT

i X
))

∂M
+

∂E(log |detM|)
∂M

.

= −E
(

ϕ(MX)XT
)
+

1
MT

For only one data point, the expectation is omitted. The learning algorithm is given by:

∆M = −ϕ(MX)XT +
1

MT .

2.2. Rotation and Dichotomization

Inverse M in each iteration, and we can obtain R. To enhance the interpretability, R
entails an orthogonal rotation by varimax. The rotated R is denoted as Q. As the Q-matrix
is binary, a method to dichotomize Q is imperative. We devise the following dichotomizing
scheme for converting Q to the binary Q-matrix.

Suppose the Q-matrix uses J items to measure K attributes. Each row in QJ×K is an
item. Item j can be presented as qj = (qj1, qj2, · · · , qjK). Let the entry with the highest
value in item j be qjmax, namely, qjmax = max(qj1, qj2, · · · , qjK). The value of each attribute
in the item is then decided by the relative magnitude of its value to the highest one. That
is, qj/qjmax = (qj1/qjmax, qj2/qjmax, · · · , qjK/qjmax). For entry qjk in item j, if qjk/qjmax ≥ a,
set qjk to 1. If qjk/qjmax < a, then set qjk to 0.

For example, suppose a Q-matrix measures 4 attributes, and values for certain item j
is qj = (0.111, 0.222, 0.333, 0.444). From qj, we find qjmax = 0.444 and therefore qj/qjmax =

(0.111/0.444, 0.222/0.444, 0.333/0.444, 0.444/0.444) = (0.25, 0.5, 0.75, 1). If a is set to 0.6,
then the derived Q-matrix state for item j is (0, 0, 1, 1).

Different values of a (i.e., 0.4, 0.5, 0.6) are tested in this research. After this procedure
is applied to every item, the whole Q-matrix is derived because QJ×K is now binary.
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3. Simulation Study

We examine whether our proposed algorithm can recover the Q-matrix from simulated
data. Settings for the simulation are the same as those in Chung [18]. The following
simulation study is carried out using customized R codes.

3.1. Q-Matrix for Simulation

This simulation study adopts the artificial Q-matrix (the complete Q-matrix in Table 2)
acquired from Rupp and Templin [30]. Fifteen items that measure four attributes comprise
the Q-matrix, which is constructed such that each attribute appears alone from items 1 to 4,
in a pair from items 5 to 10, or in a triad from items 11 to 14. It should be noted that item
15 measures all 4 attributes.

The complete Q-matrix in Table 2 contains at least one item devoted solely to each
attribute [31]. That is, each attribute in the complete Q matrix in Table 2 is individually
measured by at least one item (e.g., attribute 1 is individually tested by item 1).

This research also examines the effectiveness of our proposed algorithm in recovering
an incomplete Q-matrix (the incomplete Q-matrix in Table 2), in which an item measures
more than one attribute. Each item in the incomplete Q-matrix in Table 2 tests at least two
attributes (e.g., item 1 tests attributes 1 and 4).

3.2. Generating Correlated Attributes

Chung [18] suggests generating correlated attributes using a copula with the Choleski
decomposition. Suppose the Q-matrix (Q) uses J items to measure K attributes for I
examinees. That is, QJ×K =

(
qjk

)
J×K

and αI×K = (αik)I×K. Let ϑ be the I by K underlying

probability matrix of α, and let column k of ϑ be vector ϑk, k = 1, . . . , K. That is, ϑ =
(ϑ1, . . . , ϑK). The correlation coefficient for each pair of columns in ϑ takes the constant
value ρ , and the correlation matrix is represented as Σ. Each entry in Σ corresponds to the
correlation coefficient between two columns in ϑ. Σ can be further decomposed as Σ = νTν
using the Choleski decomposition, where ν is an upper triangular matrix.

After ν is derived, create an I × K matrix τ, in which each entry is generated from
N(0, 1). τ is then transformed to γ by using γ = τν, so that fl and Σ will have the
same correlation structure. Set Φ(γ) = ϑ, where Φ(·) is the CDF of the standard normal
distribution. α is generated using inverse transform sampling. Create a matrix ΘI×K =
(θik)I×K, where each element is generated from Uniform(0, 1). If ϑik ≥ θik, set αik to 1, and
if ϑik < θik, set αik to 0.

3.3. Generating Data from the DINA Model and RRUM

With the Q-matrix and dependent attributes, data were simulated using the DINA
model and the RRUM. Values for all guess and slip parameters are set to 0.2 for both the
DINA model (sj = gj = 0.2) and RRUM (sjk = gjk = 0.2), and the data are then created
using the inverse transform sampling from two points, in which the probability is obtained
from the IRF of the DINA model and RRUM. Note that from Equation (1) for the RRUM,
we simulate data using sjk and gjk instead of using reparameterized parameters π∗j and r∗jk.

We follow the following settings that appear in Chung [18] . Examinees in groups of
500, 1000, and 2000 were simulated with the correlation between each pair of attributes
set to 0.1, 0.3, and 0.5 for both the DINA model and RRUM. One hundred datasets were
simulated for each combination of sample size and correlation.

3.4. Evaluation

Evaluating how well the proposed method recovers the true Q-matrix q, the recovery
rate ∆ suggested by [14] is defined as:

∆ =
1
M

M

∑
m=1

(
1−

∣∣∣q̂(m) − q
∣∣∣

JK

)
,
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where M = 100, | · | takes the absolute value and q̂(m) stands for the estimated Q-matrix
for mth dataset.

3.5. Results from Simulation

For both the DINA model and RRUM, the optimal cutoff value a is 0.5 (see Table 3).
It should be noted that 0.5 is not an arbitrary cutoff. The value of 0.5 here means a half
of the highest value. The following has stated Section 2.2: If qjk/qjmax ≥ a, set qjk to 1. If
qjk/qjmax < a, then set qjk to 0. The value of an attribute has to be more than a half of the
highest value to be regarded as 1 in the Q-matrix.

Table 3. Average ∆ from different a.

DINA RRUM

a ∆ a ∆

0.4 0.983 0.4 0.944
0.5 0.994 0.5 0.962
0.6 0.991 0.6 0.954

As a = 0.5 is optimal, Table 4 shows the recovery rate for the complete Q-matrix
when a = 0.5. For the complete Q-matrix with a = 0.5, average ∆ from all combinations in
the DINA model is 0.994, suggesting an adequate result when the Q-matrix is complete
although average ∆ drops to 0.962 for the more complicated RRUM.

In terms of different sample sizes and correlations, ∆ rises along with the increase of
the sample size and drops when the correlation between attributes rises. Note that the
number of attributes is supposed to be known in advance.

For different combinations of sample size and correlation, ∆ declines when the corre-
lation between attributes goes up, while it increases along with the increase of the sample
size. ∆ is higher when the data are simulated from the RRUM.

Table 4. Recovery rates of complete Q-matrix when a = 0.5.

N

DINA RRUM

ρ ρ

0.1 0.3 0.5 0.1 0.3 0.5

500 0.997 0.990 0.975 0.942 0.932 0.913
1000 0.999 0.998 0.992 0.985 0.974 0.954
2000 1.000 1.000 0.998 0.995 0.988 0.976

Note: N and ρ respectively stand for sample size and correlation coefficient.

When the Q-matrix is incomplete, ∆ is unsatisfactory (see Table 5), ranging from
0.754 to 0.772. Such low recovery rates from an incomplete Q-matrix are similar to the
findings in Chung [18].

Table 5. Recovery rates of incomplete Q-matrix when a = 0.5.

N

DINA RRUM

ρ ρ

0.1 0.3 0.5 0.1 0.3 0.5

500 0.792 0.772 0.751 0.781 0.761 0.740
1000 0.838 0.813 0.772 0.825 0.804 0.762
2000 0.849 0.831 0.797 0.834 0.822 0.789

Note: N and ρ respectively stand for sample size and correlation coefficient.
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4. Empirical Study

Obtained from the CDM package in R [32], the Examination for the Certificate of
Proficiency in English (ECPE) data that consists of 2922 examinees is analyzed using the
proposed method described in Section 2. The ECPE is a test developed and scored by the
English Language Institute of the University of Michigan [33].

The ECPE data have appeared in different studies, such as Buck and Tatsuoka [34],
Henson and Templin [35], Templin and Hoffman [33], Feng, Habing, and Huebner [36],
and Templin and Bradshaw [37].

Buck and Tatsuoka [34] suggest a Q-matrix consisting of 28 items that measure 3 at-
tributes: Morphosyntactic rules, Cohesive rules, and Lexical rules (expert Q-matrix in
Table 5). In addition, a parallel analysis was tentatively used to determine the number of
attributes in the Q-matrix. The result also suggests 3 attributes.

We consequently decided to evaluate a 3-attribute Q-matrix solution. Exhibited in
Table 6, the expert-designed and estimated Q-matrices are denoted QX and QE respectively.
An inspection of QX and QE shows that each of them is a complete Q-matrix, and no
two columns are identical. Comparing QXwith QE, we find that 11 items are identical.
Overall, 76.2% of the entries are identical. Like the expert designed Q-matrix, the estimated
Q-matrix is complete. As for model fit, AICs for QX and QE are respectively 85,812.92 and
85,709.47, suggesting that the estimated Q-matrix (QE) better fits the data.

Table 6. Q-matrix estimate from the empirical study.

Item
Expert Q-Matrix (QX ) Estimated Q-Matrix (QE)

Attribute Attribute

1 2 3 1 2 3

1 1 1 0 1 1 1
2 0 1 0 0 1 1
3 1 0 1 1 0 0
4 0 0 1 0 0 1
5 0 0 1 0 1 1
6 0 0 1 0 0 1
7 1 0 1 1 0 1
8 0 1 0 1 1 1
9 0 0 1 0 0 1

10 1 0 0 1 0 0
11 1 0 1 1 0 1
12 1 0 1 0 0 1
13 1 0 0 0 0 1
14 1 0 0 0 0 1
15 0 0 1 0 1 1
16 1 0 1 0 0 1
17 0 1 1 0 0 1
18 0 0 1 0 1 1
19 0 0 1 0 0 1
20 1 0 1 1 0 1
21 1 0 1 0 1 1
22 0 0 1 0 0 1
23 0 1 0 0 1 1
24 0 1 0 0 1 0
25 1 0 0 1 0 0
26 0 0 1 0 1 1
27 1 0 0 1 0 1
28 0 0 1 0 0 1
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5. Discussion

The last 10 years have seen the development of a few CDM-based methods for extract-
ing the Q-matrix, whereas non-CDM based approaches have been rarely seen. One of the
non-CDM based methods makes use of NMF. Desmarais and his colleagues revealed that
NMF is a useful method in deriving the Q-matrix. From the result of NMF, Q-matrix esti-
mation is a matrix factorization. Inspired by NMF, this study demonstrates the practicality
of our proposed deterministic learning algorithm in generating the Q-matrix.

As the Q-matrix is regarded as a factor model with binary factor loadings, a rotation
using varimax after the estimation is necessary to aid interpretation. After a rotation, an
objective way to dichotomize continuous estimates is needed to derive the final Q-matrix.
Arbitrarily using a fixed value such as 0.5 might generate fallacious estimates. For example,
if the factor loadings for an item j is (0.111, 0.222, 0.333, 0.444), then a cutoff 0.5 will result
in (0, 0, 0, 0). In this research, we enforce a dichotomizing scheme using a proportion of
the highest loading (a) on the estimates after they are rotated. Results from the simulation
study suggests that setting a to 0.5 is optimal.

The simulation study demonstrates that the proposed deterministic learning algorithm
is capable of extracting the Q-matrix from data, with the results showing that recovery rates
from different conditions are all above 0.9. Both sample sizes and correlations between
attributes are influential in the Q-matrix recovery. When the Q-matrix is incomplete, the
results are not as good as the settings with a complete Q-matrix. The low recovery rate is
due to the non-identifiability of model parameters under the incomplete Q-matrix [38].

One limitation in this research is that the number of attributes is assumed to be known
in the estimation. Future research could use a parallel analysis to deal with the issue.
Another limitation is that data were simulated only from the DINA model and RRUM.
It is desirable to test the effectiveness of the proposed method on data generated from
more general CDMs, such as the GDINA model. Further research using the proposed
method is also recommended to examine the recovery rate from data simulated from
non-compensatory models, such as the DINO model.

More extensive research is needed to compare the result from factor models with the
result from CDM-based methods. A further comparison could investigate the effect of
model misspecification on guess and slip parameters in the DINA model and RRUM.

In the empirical study, our Q-matrix estimate is very different from the expert designed
Q-matrix, although 76.2% of the Q-matrix entries are identical. It is suggested that further
research applies validation approach, setting those identical entries as fixed and estimating
the rest of the entries.

In conclusion, this research demonstrated that the Q-matrix is intrinsically a fac-
tor model. Different dimensionality reduction techniques, such as principal component
analysis and singular value decomposition, incorporated with the dichotomizing scheme
advanced in this research should be able to derive the Q-matrix.

Author Contributions: Conceptualization, M.-T.C.; methodology, M.-T.C.; software, M.-T.C.; vali-
dation, M.-T.C. and S.-L.C.; formal analysis, M.-T.C.; investigation, M.-T.C. and S.-L.C.; resources,
M.-T.C. and S.-L.C.; data curation, M.-T.C. and S.-L.C.; writing—original draft preparation, M.-T.C.;
writing—review and editing, S.-L.C.; supervision, S.-L.C.; project administration, S.-L.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ECPE data can be obtained from the CDM R package.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 3062 10 of 11

References
1. Leighton, J.P.; Gierl, M.J. Cognitive Diagnostic Assessment for Education. Theory and Applications, 1st ed.; Cambridge University

Press: Cambridge, UK, 2008; pp. 1–2.
2. Junker, B.W.; Sijtsma, K. Cognitive assessment models with few assumptions, and connections with nonparametric item response

theory. Appl. Psychol. Meas. 2001, 25, 258–272. [CrossRef]
3. DiBello, L.V.; Stout, W.F. Unified cognitive psychometric assessment likelihood-based classification techniques. In Diagnostic

Assessment; Paul, D.N., Susan, F.C., Robert, L.B., Eds.; Routledge: New York, NY, USA, 1995; pp. 361–389.
4. Hartz, S. A Bayesian Framework for the Unified Model for Assessing Cognitive Abilities: Blending Theory with Practicality.

Ph.D. Thesis, University of Illinois, Champaign, IL, USA, 2002.
5. Tatsuoka, K.K. Rule space: An approach for dealing with misconceptions based on item response theory. J. Educ. Meas. 1983, 20,

345–354. [CrossRef]
6. Tatsuoka, K.K. Toward an integration of item-response theory and cognitive error diagnosis. In Diagnostic Monitoring of Skill and

Knowledge Acquisition; Frederiksen, R., Glaser, L., Shafto, M., Eds.; Routledge: Hillsdale, MI, USA, 1990; pp. 453–488.
7. de la Torre, J. An empirically-based method of Q-matrix validation for the DINA model: Development and applications. J. Educ.

Meas. 2008, 45, 343–362. [CrossRef]
8. de La Torre, J.; Douglas, JA. Higher-order latent trait models for cognitive diagnosis. Psychometrika 2004, 69, 333–353. [CrossRef]
9. de La Torre, J.; Douglas, J. Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction

data. Psychometrika 2008, 73, 595. [CrossRef]
10. Henson, R.A.; Templin, J.L.; Willse, J.T. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent

Variables. Psychometrika 2009, 74, 191–210. [CrossRef]
11. Tatsuoka, C. Data analytic methods for latent partially ordered classification models. Appl. Stat. 2002, 51, 337–350. [CrossRef]
12. Casalino G., Castiello, C.; Del Buono, N.; Esposito, F.; Mencar, C. Q-matrix Extraction from Real Response Data Using Nonnegative

Matrix Factorizations. In Computational Science and Its Applications—ICCSA 2017; Gervasi, O., Ed.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2017; Volume 10404._15. [CrossRef]

13. Chen, Y.; Culpepper, S.A.; Douglas, J.A. Bayesian Estimation of the DINA Q matrix. Psychometrika 2018, 83, 89–108. [CrossRef]
14. Liu, C.W.; Andersson, B.; Skrondal, A. A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation

in DINA Models. Psychometrika 2020, 85, 322–357. [CrossRef] [PubMed]
15. Liu, J.; Xu, G.; Ying, Z. Data-driven learning of Q-matrix. Appl. Psychol. Meas. 2012, 36, 609–618. [CrossRef] [PubMed]
16. Xu, G.; Shang, Z. Identifying Latent Structures in Restricted Latent Class Models. J. Am. Stat. Assoc. 2018, 113, 1284–1295.

[CrossRef]
17. Chung, M. Estimating the Q-Matrix for Cognitive Diagnosis Models in a Bayesian Framework. Ph.D. Thesis, Columbia University,

New York, NY, USA, 2014.
18. Chung, M. A Gibbs sampling algorithm that estimates the Q-matrix for the DINA model. J. Math. Psychol. 2019, 93, 102275.

[CrossRef]
19. Winters, T. Educational Data Mining: Collection and Analysis of Score Matrices for Outcomes-Based Assessment. Ph.D. Thesis,

University of California, Riverside, CA, USA, 2006.
20. Desmarais, M.C. Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factorization. In Proceedings

of the Educational Data Mining 2011, Eindhoven, The Netherland, 6–8 July 2011.
21. Desmarais, M.C. Mapping question items to skills with non-negative matrix factorization. ACM SIGKDD Explor. Newsl. 2012, 13,

30–36. [CrossRef]
22. Desmarais, M.C.; Naceur, R. A Matrix Factorization Method for Mapping Items to Skills and for Enhancing Expert-Based

Q-matrices. In Proceedings of the 16th Conference on Artificial Intelligence in Education, AIED2013, Memphis, TN, USA, 9–12
July 2013.

23. Desmarais, M.C.; Beheshti, B.; Naceur, R. Item to skills mapping: Deriving a conjunctive Q-matrix from data. In Proceedings of
the 11th International Conference Intelligent Tutoring Systems, ITS2012, Chania, Greece, 14–18 June 2012.

24. Cichocki, A.; Zdunek, R.; Phan, A.-H.; Amari, S. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way
Data Analysis and Blind Source Separation; Wiley: Hoboken, NJ, USA, 2009; pp. 236–239.

25. Gong, L.; Nandi, A.K. An enhanced initialization method for non-negative matrix factorization. In Machine Learning for Signal
Processing (MLSP); 2013 IEEE International Workshop; IEEE: Southampton, UK, 2013.

26. Zheng, Z.; Yang, J.; Zhu, Y. Initialization enhancer for nonnegative matrix factorization. Eng. Appl. Artif. Intell. 2007, 20, 101–110.
[CrossRef]

27. Barnes, T.; Bitzer, D.; Vouk, M. Experimental analysis of the q-matrix method in knowledge discovery. In Foundations of Intelligent
Systems: Lecture Notes in Computer Science; Hacid, M.-S., Murray, V., Raś, W., Tsumoto, S., Eds.; Springer: Heidelberg, Germany,
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